Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Biol Chem ; 404(6): 569-584, 2023 05 25.
Article in English | MEDLINE | ID: covidwho-2312394

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread all over the world. In this respect, traditional medicinal chemistry, repurposing, and computational approaches have been exploited to develop novel medicines for treating this condition. The effectiveness of chemicals and testing methods in the identification of new promising therapies, and the extent of preparedness for future pandemics, have been further highly advantaged by recent breakthroughs in introducing noble small compounds for clinical testing purposes. Currently, numerous studies are developing small-molecule (SM) therapeutic products for inhibiting SARS-CoV-2 infection and replication, as well as managing the disease-related outcomes. Transmembrane serine protease (TMPRSS2)-inhibiting medicinal products can thus prevent the entry of the SARS-CoV-2 into the cells, and constrain its spreading along with the morbidity and mortality due to the coronavirus disease 2019 (COVID-19), particularly when co-administered with inhibitors such as chloroquine (CQ) and dihydroorotate dehydrogenase (DHODH). The present review demonstrates that the clinical-stage therapeutic agents, targeting additional viral proteins, might improve the effectiveness of COVID-19 treatment if applied as an adjuvant therapy side-by-side with RNA-dependent RNA polymerase (RdRp) inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Viral Proteins
2.
Epigenetics in Organ Specific Disorders ; : 1-8, 2022.
Article in English | Scopus | ID: covidwho-2252625

ABSTRACT

Epigenetics is used to explain stable heritable chemical modifications to DNA and histones that affect gene expression without changing nucleotide sequence. The genetic expression of a trait in an organism can be moderated by epigenetics depending on the prevailing environmental conditions and activate different traits from the same genotype via modulating gene expression patterns. Several diseases can control or get influenced by the epigenome. A recent surge in research is focused on decoding such changes as early indicators of diseases. SARS-CoV-2, responsible for the worldwide pandemic, is also suggested to rattle the epigenetic network, impacting the host immune system negatively. While epigenetic drugs have majorly been studied in treating cancer, the increasing funding and interest have paved the way for the researchers to focus on other inflammatory diseases. The primary focus of this book has been to delineate the role of epigenetics in regulating disorders affecting organs in our body. © 2023 Elsevier Inc. All rights reserved.

3.
Front Nutr ; 10: 1104446, 2023.
Article in English | MEDLINE | ID: covidwho-2286195

ABSTRACT

Cordycepin, an important active substance in Cordyceps militaris, possesses antiviral and other beneficial activities. In addition, it has been reported to effectively promote the comprehensive treatment of COVID-19 and thus has become a research hotspot. The addition of naphthalene acetic acid (NAA) is known to significantly improve the yield of cordycepin; however, its related molecular mechanism remains unclear. We conducted a preliminary study on C. militaris with different concentrations of NAA. We found that treatment with different concentrations of NAA inhibited the growth of C. militaris, and an increase in its concentration significantly improved the cordycepin content. In addition, we conducted a transcriptome and metabolomics association analysis on C. militaris treated with NAA to understand the relevant metabolic pathway of cordycepin synthesis under NAA treatment and elucidate the relevant regulatory network of cordycepin synthesis. Weighted gene co-expression network analysis (WGCNA), transcriptome, and metabolome association analysis revealed that genes and metabolites encoding cordycepin synthesis in the purine metabolic pathway varied significantly with the concentration of NAA. Finally, we proposed a metabolic pathway by analyzing the relationship between gene-gene and gene-metabolite regulatory networks, including the interaction of cordycepin synthesis key genes; key metabolites; purine metabolism; TCA cycle; pentose phosphate pathway; alanine, aspartate, and glutamate metabolism; and histidine metabolism. In addition, we found the ABC transporter pathway to be significantly enriched. The ABC transporters are known to transport numerous amino acids, such as L-glutamate, and participate in the amino acid metabolism that affects the synthesis of cordycepin. Altogether, multiple channels work together to double the cordycepin yield, thereby providing an important reference for the molecular network relationship between the transcription and metabolism of cordycepin synthesis.

4.
J Biophotonics ; 16(6): e202300003, 2023 06.
Article in English | MEDLINE | ID: covidwho-2275514

ABSTRACT

Along with other COVID-19 clinical manifestations, management of both olfactory and gustatory dysfunction have drawn a considerable attention. Photobiomodulation (PBM) has emerged to be a possible effective therapy in restoring taste and smell functionality, but the evidence is scarce. Hence, the present pilot study is aimed to evaluate the effectiveness of intranasal and intraoral PBM administrations in management of anosmia and ageusia respectively. Twenty Caucasian subjects who diagnosed with anosmia and ageusia were recruited. Visual analogue scale was utilised to evaluate patients' self-reported for both olfactory and gustatory functionality. The laser-PBM parameters and treatment protocols for anosmia and ageusia were as follows respectively: 660 nm, 100 mW, two points intranasally, 60 J/session, 12 sessions; dual wavelengths (660 nm and 808 nm), 100 mW, three points intraorally, 216 J/session, 12 sessions. Our results showed a significant functionality improvement of both olfactory and gustatory functionality. Extensive studies with large data and long-term follow-up period are warranted.


Subject(s)
Ageusia , COVID-19 , Olfaction Disorders , Humans , COVID-19/complications , COVID-19/radiotherapy , Ageusia/therapy , Anosmia/radiotherapy , Pilot Projects , SARS-CoV-2 , Olfaction Disorders/radiotherapy , Olfaction Disorders/diagnosis
5.
Arab J Chem ; 16(6): 104722, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2282945

ABSTRACT

Natural products play an irreplaceable role in the treatment of SARS-CoV-2 infection. Nevertheless, the underlying molecular mechanisms involved remain elusive. To better understand their potential therapeutic effects, more validation studies are needed to explore underlying mechanisms systematically. This study aims to explore the potential targets of action and signaling pathways of cepharanthine for the treatment of COVID-19. This study revealed that a total of 173 potential targets of action for Cepharanthine and 86 intersectional targets for Cepharanthine against COVID-19 were screened and collected. Gene Ontology enrichment analysis suggested that inflammatory, immune cell and enzyme activities were the critical terms for cepharanthine against COVID-19. Pathway enrichment analysis showed that five pathways associated with COVID-19 were the main signaling pathways for the treatment of COVID-19 via cepharanthine. Molecular docking and molecular dynamics simulations suggested that 6 core targets were regarded as potential targets for cepharanthine against COVID-19. In brief, the study demonstrates that cepharanthine may play an important role in the treatment of SARS-CoV-2 infection through its harmonious activity against SARS-CoV-2 pathways and multiple related targets. This article provides valuable insights required to respond effectively to concerns of western medical community.

6.
Cells ; 11(24)2022 12 10.
Article in English | MEDLINE | ID: covidwho-2154907

ABSTRACT

OBJECTIVE: Glioma is the most common primary malignancy of the adult central nervous system (CNS), with a poor prognosis and no effective prognostic signature. Since late 2019, the world has been affected by the rapid spread of SARS-CoV-2 infection. Research on SARS-CoV-2 is flourishing; however, its potential mechanistic association with glioma has rarely been reported. The aim of this study was to investigate the potential correlation of SARS-CoV-2-related genes with the occurrence, progression, prognosis, and immunotherapy of gliomas. METHODS: SARS-CoV-2-related genes were obtained from the human protein atlas (HPA), while transcriptional data and clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Glioma samples were collected from surgeries with the knowledge of patients. Differentially expressed genes were then identified and screened, and seven SARS-CoV-2 related genes were generated by LASSO regression analysis and uni/multi-variate COX analysis. A prognostic SARS-CoV-2-related gene signature (SCRGS) was then constructed based on these seven genes and validated in the TCGA validation cohort and CGGA cohort. Next, a nomogram was established by combining critical clinicopathological data. The correlation between SCRGS and glioma related biological processes was clarified by Gene set enrichment analysis (GSEA). In addition, immune infiltration and immune score, as well as immune checkpoint expression and immune escape, were further analyzed to assess the role of SCRGS in glioma-associated immune landscape and the responsiveness of immunotherapy. Finally, the reliability of SCRGS was verified by quantitative real-time polymerase chain reaction (qRT-PCR) on glioma samples. RESULTS: The prognostic SCRGS contained seven genes, REEP6, CEP112, LARP4B, CWC27, GOLGA2, ATP6AP1, and ERO1B. Patients were divided into high- and low-risk groups according to the median SARS-CoV-2 Index. Overall survival was significantly worse in the high-risk group than in the low-risk group. COX analysis and receiver operating characteristic (ROC) curves demonstrated excellent predictive power for SCRGS for glioma prognosis. In addition, GSEA, immune infiltration, and immune scores indicated that SCRGS could potentially predict the tumor microenvironment, immune infiltration, and immune response in glioma patients. CONCLUSIONS: The SCRGS established here can effectively predict the prognosis of glioma patients and provide a potential direction for immunotherapy.


Subject(s)
COVID-19 , Glioma , Vacuolar Proton-Translocating ATPases , Adult , Humans , SARS-CoV-2/genetics , Reproducibility of Results , COVID-19/genetics , Immunotherapy , Glioma/genetics , Glioma/therapy , Tumor Microenvironment , Cyclophilins , Eye Proteins , Membrane Proteins
8.
World Journal of Traditional Chinese Medicine ; 8(3):279-313, 2022.
Article in English | Scopus | ID: covidwho-2024695

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2, continues to be a global concern. Traditional Chinese medicines (TCMs) are an important element of the fight against COVID-19 in China. The combined application of TCMs and conventional medicines in the treatment of COVID-19 has achieved beneficial results, including the resolution of symptoms, prevention of disease progression, and reduced mortality. In this review, we summarize and discuss the current applications of TCMs with respect to COVID-19, as well as update the preclinical and clinical research, including chemical analysis, molecular mechanisms, quality control, drug development, and studies of clinical efficacy. The expectation is that a better understanding of the roles of TCMs against COVID-19 will improve the response to COVID-19, both in China and globally. © 2022 World Journal of Traditonal Chinese Medicine Published by Wolters Kluwer - Medknow.

9.
Stem Cell Res Ther ; 13(1): 410, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1993380

ABSTRACT

Since December 2019, the coronavirus (COVID-19) pandemic has imposed huge burdens to the whole world, seriously affecting global economic growth, and threatening people's lives and health. At present, some therapeutic regimens are available for treatment of COVID-19 pneumonia, including antiviral therapy, immunity therapy, anticoagulant therapy, and others. Among them, injection of mesenchymal stem cells (MSCs) is currently a promising therapy. The preclinical studies and clinical trials using MSCs and small extracellular vesicles derived from MSCs (MSC-sEVs) in treating COVID-19 were summarized. Then, the molecular mechanism, feasibility, and safety of treating COVID-19 with MSCs and MSC-sEVs were also discussed.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Coronavirus Infections , Extracellular Vesicles , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , COVID-19/therapy , Coronavirus Infections/therapy , Humans
10.
Chinese Journal of Chemical Physics ; 35(3):407-412, 2022.
Article in English | Scopus | ID: covidwho-1972753

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) relies on the central molecular machine RNA-dependent RNA polymerase (RdRp) for the viral replication and transcription. Remdesivir at the template strand has been shown to effectively inhibit the RNA synthesis in SARS-CoV-2 RdRp by deactivating not only the complementary UTP incorporation but also the next nucleotide addition. However, the underlying molecular mechanism of the second inhibitory point remains unclear. In this work, we have performed molecular dynamics simulations and demonstrated that such inhibition has not directly acted on the nucleotide addition at the active site. Instead, the translocation of Remdesivir from +1 to-1 site is hindered thermodynamically as the post-Translocation state is less stable than the pre-Translocation state due to the motif B residue G683. Moreover, another conserved residue S682 on motif B further hinders the dynamic translocation of Remdesivir due to the steric clash with the 1′-cyano substitution. Overall, our study has unveiled an alternative role of motif B in mediating the translocation when Remdesivir is present in the template strand and complemented our understanding about the inhibitory mechanisms exerted by Remdesivir on the RNA synthesis in SARS-CoV-2 RdRp. © 2022 Chinese Physical Society.

11.
Chemical Engineering Journal Advances ; : 100374, 2022.
Article in English | ScienceDirect | ID: covidwho-1966422

ABSTRACT

Modeling complex chemical reaction networks has inspired a considerable body of research, and a variety of approaches to modeling nonlinear pathways are being developed. Here, a general methodology is formulated to convert an arbitrary reaction network into its equivalent electrical analog. The topological equivalence of the electrical analog is mathematically established for unimolecular reactions using Kirchoff's laws. The modular approach is generalized to bimolecular and nonlinear autocatalytic reactions. It is then applied to simulate the dynamics of nonlinear autocatalytic networks without making simplifying assumptions, such as use of the quasi-steady state/Bodenstein approximation and the assumption of an absence of nonlinear steps in the intermediates. This is among the few papers that quantify the dynamics of a nonlinear chemical reaction network by generating and simulating an electrical network analog. As a realistic biological application, the early phase of the spread of COVID-19 is modeled as an autocatalytic process, and the predicted dynamics are in good agreement with experimental data. The rate-limiting step of viral transmission is identified, leading to novel mechanistic insights.

12.
Int J Mol Sci ; 21(15)2020 Jul 22.
Article in English | MEDLINE | ID: covidwho-1934093

ABSTRACT

Tissue injury and inflammatory response trigger the development of fibrosis in various diseases. It has been recognized that both innate and adaptive immune cells are important players with multifaceted functions in fibrogenesis. The activated immune cells produce various cytokines, modulate the differentiation and functions of myofibroblasts via diverse molecular mechanisms, and regulate fibrotic development. The immune cells exhibit differential functions during different stages of fibrotic diseases. In this review, we summarized recent advances in understanding the roles of immune cells in regulating fibrotic development and immune-based therapies in different disorders and discuss the underlying molecular mechanisms with a focus on mTOR and JAK-STAT signaling pathways.


Subject(s)
Adaptive Immunity , Fibrosis/immunology , Immunity, Innate , Signal Transduction/immunology , Animals , B-Lymphocytes/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Fibrosis/pathology , Fibrosis/therapy , Humans , Lymphopoiesis/immunology , Macrophages/immunology , Myofibroblasts/metabolism , Neutrophils/immunology , T-Lymphocytes/immunology
13.
iScience ; 25(8): 104685, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1914522

ABSTRACT

Noncoding RNAs are important regulators of mucoinflammatory response, but little is known about the contribution of airway long noncoding RNAs (lncRNAs) in COVID-19. RNA-seq analysis showed a more than 4-fold increased expression of IL-6, ICAM-1, CXCL-8, and SCGB1A1 inflammatory factors; MUC5AC and MUC5B mucins; and SPDEF, FOXA3, and FOXJ1 transcription factors in COVID-19 patient nasal samples compared with uninfected controls. A lncRNA on antisense strand to ICAM-1 or LASI was induced 2-fold in COVID-19 patients, and its expression was directly correlated with viral loads. A SARS-CoV-2-infected 3D-airway model largely recapitulated these clinical findings. RNA microscopy and molecular modeling indicated a possible interaction between viral RNA and LASI lncRNA. Notably, blocking LASI lncRNA reduced the SARS-CoV-2 replication and suppressed MUC5AC mucin levels and associated inflammation, and select LASI-dependent miRNAs (e.g., let-7b-5p and miR-200a-5p) were implicated. Thus, LASI lncRNA represents an essential facilitator of SARS-CoV-2 infection and associated airway mucoinflammatory response.

14.
ESC Heart Fail ; 9(5): 2937-2954, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1894590

ABSTRACT

AIMS: The co-morbidities contribute to the inferior prognosis of COVID-19 patients. Recent reports suggested that the higher co-morbidity rate between COVID-19 and heart failure (HF) leads to increased mortality. However, the common pathogenic mechanism between them remained elusive. Here, we aimed to reveal underlying molecule mechanisms and genetic correlation between COVID-19 and HF, providing a new perspective on current clinical management for patients with co-morbidity. METHODS: The gene expression profiles of HF (GSE26887) and COVID-19 (GSE147507) were retrieved from the GEO database. After identifying the common differentially expressed genes (|log2FC| > 1 and adjusted P < 0.05), integrated analyses were performed, namely, enrichment analyses, protein-protein interaction network, module construction, critical gene identification, and functional co-expression analysis. The performance of critical genes was validation combining hierarchical clustering, correlation, and principal component analysis in external datasets (GSE164805 and GSE9128). Potential transcription factors and miRNAs were obtained from the JASPER and RegNetwork repository used to construct co-regulatory networks. The candidate drug compounds in potential genetic link targets were further identified using the DSigDB database. RESULTS: The alteration of 12 genes was identified as a shared transcriptional signature, with the role of immune inflammatory pathway, especially Toll-like receptor, NF-kappa B, chemokine, and interleukin-related pathways that primarily emphasized in response to SARS-CoV-2 complicated with HF. Top 10 critical genes (TLR4, TLR2, CXCL8, IL10, STAT3, IL1B, TLR1, TP53, CCL20, and CXCL10) were identified from protein-protein interaction with topological algorithms. The unhealthy microbiota status and gut-heart axis in co-morbidity were identified as potential disease roads in bridging pathogenic mechanism, and lipopolysaccharide acts as a potential marker for monitoring HF during COVID-19. For transcriptional and post-transcriptional levels, regulation networks tightly coupling with both disorders were constructed, and significant regulator signatures with high interaction degree, especially FOXC1, STAT3, NF-κB1, miR-181, and miR-520, were detected to regulate common differentially expressed genes. According to genetic links targets, glutathione-based antioxidant strategy combined with muramyl dipeptide-based microbe-derived immunostimulatory therapies was identified as promising anti-COVID-19 and anti-HF therapeutics. CONCLUSIONS: This study identified shared transcriptomic and corresponding regulatory signatures as emerging therapeutic targets and detected a set of pharmacologic agents targeting genetic links. Our findings provided new insights for underlying pathogenic mechanisms between COVID-19 and HF.


Subject(s)
COVID-19 , Heart Failure , MicroRNAs , Humans , COVID-19/epidemiology , COVID-19/genetics , Systems Biology , SARS-CoV-2/genetics , Heart Failure/epidemiology , Heart Failure/genetics
15.
J Med Microbiol ; 71(5)2022 May.
Article in English | MEDLINE | ID: covidwho-1853315

ABSTRACT

Introduction. As a novel global epidemic, corona virus disease 2019 (COVID-19) caused by SARS-CoV-2 brought great suffering and disaster to mankind. Recently, although significant progress has been made in vaccines against SARS-CoV-2, there are still no drugs for treating COVID-19. It is well known that traditional Chinese medicine (TCM) has achieved excellent efficacy in the treatment of COVID-19 in China. As a treasure-house of natural drugs, Chinese herbs offer a promising prospect for discovering anti-COVID-19 drugs.Hypothesis/Gap Statement. We proposed that Rhei Radix et Rhizome-Schisandrae Sphenantherae Fructus (RS) may have potential value in the treatment of COVID-19 patients by regulating immune response, protecting the cardiovascular system, inhibiting the production of inflammatory factors, and blocking virus invasion and replication processes.Aim. We aimed to explore the feasibility and molecular mechanisms of RS against COVID-19, to provide a reference for basic research and clinical applications.Methodology. Through literature mining, it is found that a Chinese herbal pair, RS, has potential anti-COVID-19 activity. In this study, we analysed the feasibility of RS against COVID-19 by high-throughput molecular docking and molecular dynamics simulations. Furthermore, we predicted the molecular mechanisms of RS against COVID-19 based on network pharmacology.Results. We proved the feasibility of RS anti-COVID-19 by literature mining, virtual docking and molecular dynamics simulations, and found that angiotensin converting enzyme 2 (ACE2) and 3C-like protease (3 CL pro) were also two critical targets for RS against COVID-19. In addition, we predicted the molecular mechanisms of RS in the treatment of COVID-19, and identified 29 main ingredients, 21 potential targets and 16 signalling pathways. Rhein, eupatin, (-)-catechin, aloe-emodin may be important active ingredients in RS. ALB, ESR1, EGFR, HMOX1, CTSL, and RHOA may be important targets against COVID-19. Platelet activation, renin secretion, ras signalling pathway, chemokine signalling pathway, and human cytomegalovirus infection may be important signalling pathways against COVID-19.Conclusion. RS plays a key role in the treatment of COVID-19, which may be closely related to immune regulation, cardiovascular protection, anti-inflammation, virus invasion and replication processes.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , COVID-19 Vaccines , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Feasibility Studies , Flavonoids , Humans , Molecular Docking Simulation , Rhizome , SARS-CoV-2
16.
Kexue Tongbao/Chinese Science Bulletin ; 67(10):933-947, 2022.
Article in Chinese | Scopus | ID: covidwho-1793661

ABSTRACT

COVID-19 has caused the outbreak to spread on a global scale due to its high transmission rate and ineffective prevention and treatment. The disease is caused by a new type of single-stranded RNA coronavirus, which was named SARS-CoV-2 by the International Committee on Taxonomy of Viruses. As of November 2021, more than 210 countries and regions around the world have been affected by the coronavirus, and a total of more than 240 million confirmed cases have been reported worldwide, and the death toll has exceeded 4 million. Although the vaccine immunizations have alleviated the COVID-19 pandemic to some extent, however from the perspective of clinical treatment, the development of effective antiviral therapeutics for COVID-19 remains urgent and long-term need. Remdesivir (Veklury, Gilead), which was approved by the US FDA in October 2020, is currently the only officially approved coronavirus polymerase inhibitor. However, the clinical efficacy of remdesivir for COVID-19 remains contentious, as the statistical differences in both mortality rate and clinical improvement between drug-treated and control groups were not clearly verified in several trials. Very recently following remdesivir, Merck announced the first effective antiviral pill against COVID-19 called molnupiravir, which has finished phase III clinical trials with proven efficacy to reduce the risk of hospitalizations and deaths by 50% in patients with mild-to-moderate COVID-19. Based on this result, Merck received the first authorization from the UK (as of November 9, 2021). It is also known that one more antiviral pill developed by Pfizer with the compound code PF-07321332, is already in the final stages of trial data analysis, so it is expected that this will be the second orally available drug for authorization application in the coming few months. Despite the encouraging results achieved by Merck and Pfizer's scientists, the practical challenges and high attrition rates on new drug development remain a difficult reality for the medicinal chemists and pharmaceutical scientists. In this article, we provide an overview of the research hotspots of the development for COVID-19 treatment agents, especially on the representative antiviral compounds that have potential inhibitory effects against SARS-CoV-2. By focusing on specific biotargets of SARS-CoV-2 and their drug molecules, mechanism strategies, and their clinical testing results, we summarize the opportunities and challenges faced by drug developers in stopping the COVID-19 pandemic. This review further provides the current status on development of COVID-19 chemotherapeutics and outlines some future perspectives on potential innovation strategies to mitigate the risk in the new drug discovery. © 2022, Science Press. All right reserved.

17.
Theranostics ; 12(6): 2722-2740, 2022.
Article in English | MEDLINE | ID: covidwho-1780236

ABSTRACT

Aging is a natural process, which plays a critical role in the pathogenesis of a variety of diseases, i.e., aging-related diseases, such as diabetes, osteoarthritis, Alzheimer disease, cardiovascular diseases, cancers, obesity and other metabolic abnormalities. Metformin, the most widely used antidiabetic drug, has been reported to delay aging and display protective effect on attenuating progression of various aging-related diseases by impacting key hallmark events of aging, including dysregulated nutrient sensing, loss of proteostasis, mitochondrial dysfunction, altered intercellular communication, telomere attrition, genomic instability, epigenetic alterations, stem cell exhaustion and cellular senescence. In this review, we provide updated information and knowledge on applications of metformin in prevention and treatment of aging and aging-related diseases. We focus our discussions on the roles and underlying mechanisms of metformin in modulating aging and treating aging-related diseases.


Subject(s)
Metformin , Aging/pathology , Cellular Senescence , Genomic Instability , Humans , Metformin/pharmacology , Metformin/therapeutic use , Telomere
18.
Antioxidants (Basel) ; 11(3)2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1760315

ABSTRACT

The rapid spread of antibiotic resistance and lack of effective drugs for treating infections caused by multi-drug resistant bacteria in animal and human medicine have forced us to find new antibacterial strategies. Natural products have served as powerful therapeutics against bacterial infection and are still an important source for the discovery of novel antibacterial drugs. Curcumin, an important constituent of turmeric, is considered safe for oral consumption to treat bacterial infections. Many studies showed that curcumin exhibited antibacterial activities against Gram-negative and Gram-positive bacteria. The antibacterial action of curcumin involves the disruption of the bacterial membrane, inhibition of the production of bacterial virulence factors and biofilm formation, and the induction of oxidative stress. These characteristics also contribute to explain how curcumin acts a broad-spectrum antibacterial adjuvant, which was evidenced by the markedly additive or synergistical effects with various types of conventional antibiotics or non-antibiotic compounds. In this review, we summarize the antibacterial properties, underlying molecular mechanism of curcumin, and discuss its combination use, nano-formulations, safety, and current challenges towards development as an antibacterial agent. We hope that this review provides valuable insight, stimulates broader discussions, and spurs further developments around this promising natural product.

19.
Virol J ; 19(1): 49, 2022 03 19.
Article in English | MEDLINE | ID: covidwho-1745442

ABSTRACT

The newly identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a global health emergency (COVID-19) because of its rapid spread and high mortality. Since the virus epidemic, many pathogenic mechanisms have been revealed, and virus-related vaccines have been successfully developed and applied in clinical practice. However, the pandemic is still developing, and new mutations are still emerging. Virus pathogenicity is closely related to the immune status of the host. As innate immunity is the body's first defense against viruses, understanding the inhibitory effect of SARS-CoV-2 on innate immunity is of great significance for determining the target of antiviral intervention. This review summarizes the molecular mechanism by which SARS-CoV-2 escapes the host immune system, including suppressing innate immune production and blocking adaptive immune priming. Here, on the one hand, we devoted ourselves to summarizing the combined action of innate immune cells, cytokines, and chemokines to fine-tune the outcome of SARS-CoV-2 infection and the related immunopathogenesis. On the other hand, we focused on the effects of the SARS-CoV-2 on innate immunity, including enhancing viral adhesion, increasing the rate of virus invasion, inhibiting the transcription and translation of immune-related mRNA, increasing cellular mRNA degradation, and inhibiting protein transmembrane transport. This review on the underlying mechanism should provide theoretical support for developing future molecular targeted drugs against SARS-CoV-2. Nevertheless, SARS-CoV-2 is a completely new virus, and people's understanding of it is in the process of rapid growth, and various new studies are also being carried out. Although we strive to make our review as inclusive as possible, there may still be incompleteness.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Cytokines/metabolism , Humans , Immunity, Innate
20.
2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021 ; : 2179-2186, 2021.
Article in English | Scopus | ID: covidwho-1722861

ABSTRACT

The overall global death rate for COVID-19 patients has escalated to 2.13% after more than a year of worldwide spread. Despite strong research on the infection pathogenesis, the molecular mechanisms involved in a fatal course are still poorly understood. Machine learning constitutes a perfect tool to develop algorithms for predicting a patient's hospitalization outcome at triage. This paper presents a probabilistic model, referred to as a mortality risk indicator, able to assess the risk of a fatal outcome for new patients. The derivation of the model was done over a database of 2,547 patients from the first COVID-19 wave in Spain. Model learning was tackled through a five multistart configuration that guaranteed good generalization power and low variance error estimators. The training algorithm made use of a class weighting correction to account for the mortality class imbalance and two regularization learners, logistic and lasso regressors. Outcome probabilities were adjusted to obtain cost-sensitive predictions by minimizing the type II error. Our mortality indicator returns both a binary outcome and a three-stage mortality risk level. The estimated AUC across multistarts reaches an average of 0.907. At the optimal cutoff for the binary outcome, the model attains an average sensitivity of 0.898, with a 0.745 specificity. An independent set of 121 patients later released from the same consortium attained perfect sensitivity (1), with a 0.759 specificity when predicted by our model. Best performance for the indicator is achieved when the prediction's time horizon is within two weeks since admission to hospital. In addition to a strong predictive performance, the set of selected features highlights the relevance of several underrated molecules in COVID-19 research, such as blood eosinophils, bilirubin, and urea levels. © 2021 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL